
SOLID Principles with Kotlin Examples

Index

1. Introduction

2. What Are SOLID Principles?

2.1. Single-Responsibility Principle

2.2. Open-Closed Principle

2.3. Liskov Substitution Principle

2.4. Interface Segregation Principle

2.5. Dependency Inversion Principle

3. Summary

1. Introduction

If you are familiar with Object-Oriented Programming,then you’ve

probably heard about the SOLID principles.

The SOLID Principles are five principles of Object-Oriented class design.

They are a set of rules and best practices to follow while designing a class

structure.

2. What Are SOLID Principles?

Basically, SOLID is an acronym for five design principles,
which main goal is to make software designs easier to read, maintain and
work with.
It’s been introduced around 2004, by Michael Feathers. Nevertheless,
it’s just a subset of many principles promoted by Robert C. Martin, also
known as an “Uncle Bob”.

2.1 Single-Responsibility Principle

2.2 Open-Closed Principle

2.3 Liskov Substitution Principle

2.4 Interface Segregation Principle

2.5 Dependency Inversion Principle

2.1 Single-Responsibility Principle

2.1.1 Theory

The Single-responsibility principle states:

A class should have only single responsibility.

In other words, a class should have only one reason to exists and

moreover- be responsible for one thing. Although it seems pretty

straightforward, the judgement itself is oftentimes really subjective

and may vary between programmers.

2.1.2 Violation Example

For the purpose of simplicity, the above functions are just printing some text

to the output. Nevertheless,

In the real-life scenarios the sendNotification() would be responsible for

preparing an HTML content for the email and sending it to the given email

address.

On the other hand, the deleteUser() would perform an SQL query deleting

the record from connected database.

In such a case, we can clearly see that our service is responsible for 3

different things.

Moreover, let’s imagine that:

1.The marketing team requested a change in the e-mail template because

of the branding change

2.The CTO requested an email automation provider change

3.The data team requested a change in SQL query

We can clearly see that each of these requests may easily affect

theoretically unrelated business functions.

2.1.3 Solution

2.1.4 Benefits

Finally, let’s summarize with the most important benefits that come with well

designed, isolated classes with one responsibility:

● most importantly- any bug introduced to the particular class affects

less parts of the system (and organization as a whole)

● additionally, the number of merge conflicts is reduced when multiple

people are working with the codebase

● whatsoever, it can introduce much better readability than the

monolithic classes

2.2 Open-Closed Principle

2.2.1 Theory

Let’s take a look at the open-closed principle:

Software entities (classes, modules, functions, etc.) should be

open for extension, but closed for modification.

2.2.2 Example

2.2.3 Benefits

Identically, let’s see the most important advantages of the open-closed

principle:

● first of all, reusability and flexibility. We can use already existing

codebase to implement new features or apply changes without the

need of reinventing the wheel

● moreover, the above advantage is a great time-saver

● additionally, modification of existing classes might introduce

unwanted behavior everywhere they’ve been used. With the

open-closed principle, we can easily avoid this risk

2.3 Liskov Substitution Principle

2.3.1 Theory

it should not break the existing functionality.

Rreplacement of the interface invocation with the derived method will

definitely break the flow.

2.3.2 Violation Example

Let’s say that we’ve got two types of users in the app: standard and admin.

Both types of the account can be created. Nevertheless, the admin account

can not be deleted in our app (for instance it can be done only from an

external one).

This time, we’ve introduced more specific contract with two, separate

interfaces. Definitely, the hypothetical substitution won’t break the flow.

2.3.3 Solution

2.3.4 Benefits

Given the above, what does the Liskov substitution principle bring to the

table?

● when our subtypes conform behaviorally to the supertypes in our

code, our code hierarchy becomes cleaner

● furthermore, people working with the abstraction (interface in our

case) can be sure that no unexpected behavior occurs

2.4 Interface Segregation Principle

2.4.1 Theory

Many client-specific interfaces are better than one general-purpose

interface.

2.4.2 Violation Example

2.4.3 Solution

2.4.4 Benefits

Applying the interface segregation principle in our designs has plenty of

perks. Let’s check a few of them:

● well designed interfaces help us to follow the other principles. It’s

much easier to take care of single responsibility and as we could see-

Liskov substitution

● additionally, precise contract described by the interface makes the

code less error-prone

● whatsoever, it really improves readability of the hierarchy and the

codebase itself

2.5 Dependency Inversion Principle

2.5.1 Theory

Depend upon abstractions, [not] concretions.

2.5.2 Violation Example

As we can see, the EmailNotificationService will send a formatted to upper

case message. Although everything is working as expected, we can spot

that this method depends on the specific implementation.

2.5.3 Solution

This time, we made the EmailNotificationService independent of the

formatter implementation. The only thing that this service care about is that

the formatter has to return a String value. As we can see, applying this

principle gives us much more flexibility.

2.5.4 Benefits

Finally, let’s enumerate the dependency inversion principle benefits:

allows the codebase to be easily expanded and extended with new

functionalities

furthermore, it improves reusability

3. Summary

And that would be all for this post covering the SOLID principles with

Kotlin examples.

We really hope that this one will help you to understand these principles

even better, no matter whether you are a beginner or an advanced

programmer.

Single-Responsibility Principle Violation and Solution

Liskov Substitution Violation and Solution

Interface Segregation Violation and Solution

Dependency Inversion Violation and Solution

References:

https://codersee.com/solid-principles-with-kotlin-examples/

https://codersee.com/solid-principles-with-kotlin-examples/

